The GPM Validation Activity over the Korea

19 October 2017

Geun-Hyeok Ryu¹, Ki-Hong Park¹, Chung-Yong Lee², Gyu-Won Lee², Sang-Mi Lee³, Gwang-Deuk Ahn⁴

- 1 National Meteorological Satellite Center, KMA
- 2 Kyungpook National University
- 3 Weather Radar Center, KMA
- 4 Numerical Modelling Center, KMA

Outline

Direct Validation of GPM over the Korea (Part I)

- Summer time ground validation using VN over the Korea
- Quick evaluation of improvement from V4 to V5 over the Korea
- Snowfall validation over DFS(Digital Forecast System) frame

KMA Radar System Improvement (Part II)

- Dual-pol. Radar system Replacement status
- RAR system improvement

ICE-POP 2018 (Part III)

- Progress of ICE-POP 2018

Validation Network over the Korea

Reflectivity Comparison Statistics (KMA sites)

Reflectivity Comparison Statistics (MOLIT sites)

Quick Evaluation of Algorithm improvement @Jindo

Quick Evaluation of Algorithm improvement @Myunbong

Quick Evaluation of Algorithm improvement @Jindo

Quick Evaluation of Algorithm improvement @Myunbong

Application DFS for GPM GV

- **Digital Forecast System (DFS)**
- KMA operates the DFS to provide village scale forecasts up to 2 days.
- DFS uses fixed grid projected on Lambert conformal conic map.
- ✓ Horizontal resolution can be changed from 5 km to 35 km.

[GR reflectivity over DFS coordinates]

DPR L3 snowfall validation

DPR L3 snowfall validation

DPR vs. Radars (Time ave., 1x1 grids)

Replacement to S-band dual polarization radar SMSC

Year	2014	2015	2016	2017	2018	2019
Site	BRI YIT	JNI MYN	KWK PSN	GDK GSN	KSN SSP	GNG

KMA replaces radar system to S-band dual polarization radar from 2013 to 2019.

RAR (Radar-AWS Rainrate)

Courtesy of Sang-Mi Lee

RAR in KMA

- KMA has developed the adjustment techniques of radar rainfall based on rain gauges measurement, Radar-AWS Rainrate (RAR).
- RAR system provides the gauge-adjusted radar rainrate in real time by applying new coefficient 'a' and exponent 'b' in radar Z-R relationship based on window probability matching method every 10 minutes are derived from pairs between radar reflectivity and gauge rainrate.

	Radar	AWS	RAR	
Observation Range	11 radars (All sites : S-band)	642 points in Korea Peninsula	Composition of 11 KMA radars	
Spatial Resolution	1km*1km (240km range)	about 13 km	1241*1761(1 km)	
Time Resolution	10 min	1 min	10 min	
Unit	dBZ	mmhr-1	mmhr -1	

RAR Algorithm RAR(Radar-AWS Rainrate) Algorithm Flowchart Improvement 1 QC'ed Reflectivity Rain-gauge rainrate of each radar 1×1 km2 pixel of each radar at 1.5 km CAPPI Calculation of Z-R relationship by WPMM Make pair of radar reflectivity(Z)-raingauge rainfall(R) Calculate Z-R relationships(by Least squre fit) Improvement 2 & 3 Radar rainfall estimates by Z-R relationships in each radar Composite RAR field Computation of adjusted Z-R relationship in real-time

Problem of current RAR

Courtesy of Sang-Mi Lee

- Sometimes RAR shows unrealistic temporal discontinuity
 - at the beginning of WPMM

06:10

: default relation

06:20

: real-time relation from RAR

· Unstable 'a' and 'b'

Improvement of RAR system

Courtesy of Sang-Mi Lee

In order to obtain stable RAR rainfield

1. Improvement Rainfall QC procedure

Weather Radar Center-Rain Gauge Process (WRC-RGP, WRC, 2016)

This program provides a list of available rain gauges within a certain radius of radar, and calculate accumulated rainfall data according to quality control method*, and time resolution selected by user. WRC-RGP has *improved quality control performance* for raingauge rainfall, and also *reduced computation time* for QC-process.

(*Quality Control : Integrity check, Physical limit check, Checking temporal consistency, Climatological Check)

2. Applying Mean Coefficient to default relationship

The new coefficients are derived only when the number of pairs between radar rainfall estimates and rain gauge rainfall are enough. Otherwise, Marshall-Palmer (M-P) Z-R relationship is applied as a default relationship. The use of M-P relationship induces temporal discontinuity of RAR.

In order to obtain stable RAR rain field, we've calculated the mean Z-R relationship for each radar sites.

(Period: March~October, 2015 and 2016)

3. Error Weighted correcting method to improve temporal stability

The Z-R relationship calculated in real-time is calculated independently every 10 minutes, several discontinuity exists in RAR system. We used bias correction method to reduce temporal discontinuity of rain fields

$$R_{qped} = \frac{rRMSE_2}{rRMSE_1 + rRMSE_2} R_1 + \frac{rRMSE_1}{rRMSE_1 + rRMSE_2} R_2$$

 R_{qped} = Error Inverse corrected Rainrate R_1 = QPED by Real-time Z-R relation R_2 = QPED by Mean Z-R relation $rRMSE_1$ = rRMSE from Real-time Z-R relation $rRMSE_2$ = rRMSE from Mean Z-R relation

Improved RAR

Courtesy of Sang-Mi Lee

Case of Improved RAR system

Case period: 14 APR 2017 05:40KST~06:30KST

Applying Mean Z-R relation as default relationship and bias correction method on estimating precipitation in real-time, the amount of temporal changing impact in RAR system was relaxed.

- Improved RAR': applying site mean Z-R relation as default relationship
- Improved RAR": applying site mean Z-R relation as default relationship + Error Weighting Corrected

Verification score of Improved RAR

Case period: 14 APR 2017 00:00KST~16:00KST

	Operational RAR	Improved RAR ⁴	Improved RAR*
BIAS	-0.441	-0.322	-0.222
RMSE	5.398	4.162	4.074
CORR	0.478	0.569	0.586

Progress

- Experiments of Observation and NWP during test event (Nov Mar 2016/2017)
 - IOP: 1 radar, 2 lidar, 8 Parsivel, 5 POSS, 2 sonde sites(3 hourly for case)

Francisco Tapidor Stella Melo Yu-Chieng Liou

→ Need to deploy radar on SCO and DGW

Progress

ICE-POP 2018

Observation Part Workshop

Observation WG meeting (Mar., Sep. 2017)

- Improve IOP plan

from initial IOP(TEAMR, Lidar, Parsivel) in 2016/2017

- Timeline for radar deployments

Timeline

Validation Site

Period: JJA 2017

Site name	Site ID	Lat (°N)	Lon (°E)	Alt (m)
Jindo	JNI	34.471	126.328	499
Busan	PSN	35.115	129.001	547
Gosan	GSN	33.294	126.163	103
Seongsan	SSP	33.387	126.880	72
Baengnyeong	BRI	37.968	124.630	185
Myeonbong	MYN	36.179	128.997	1136
Gwanak	KWK	37.444	126.964	641
Gwangdeok	GDK	38.118	127.434	1061
Oseong	KSN	36.013	126.784	231
Gangneung	GNG	37.818	128.866	99
Yongin Test-bed	YIT	37.206	127.285	473
Biseul	BSL	35.694	128.535	1085
Sobaek	SBS	36.928	128.441	1408
Mohu	MHS	35.034	127.183	958
Seodae	SDS	36.225	127.543	922

KMA started to replace the radar network to S-band Dual polarization radar from 2013.

Black: Operated by KMA, Blue: Test-bed(KMA), Red: Operated by MOLIT